An Exact Algorithm for the Maximum Leaf Spanning Tree Problem

نویسندگان

  • Henning Fernau
  • Joachim Kneis
  • Dieter Kratsch
  • Alexander Langer
  • Mathieu Liedloff
  • Daniel Raible
  • Peter Rossmanith
چکیده

Given an undirected graph with n nodes, the Maximum Leaf Spanning Tree problem is to find a spanning tree with as many leaves as possible. When parameterized in the number of leaves k, this problem can be solved in time O(4poly(n)) using a simple branching algorithm introduced by a subset of the authors [12]. Daligault, Gutin, Kim, and Yeo [6] improved the branching and obtained a running time of O(3.72poly(n)). In this paper, we study the problem from an exponential time viewpoint, where it is equivalent to the Connected Dominating Set problem. Here, Fomin, Grandoni, and Kratsch showed how to break the Ω(2) barrier and proposed an O(1.9407)-time algorithm [10]. In light of some useful properties of [12] and [6], we present a branching algorithm whose running time of O(1.8966) has been analyzed using the Measure-and-Conquer technique. Finally we provide a lower bound of Ω(1.4422) for the worst case running time of our algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem

The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...

متن کامل

Development and Experimental Comparison of Exact and Heuristic Algorithms for the Maximum-Leaf Spanning Tree Problem

Given a connected, undirected and unweighted graph G, the maximum leaf spanning tree problem (MLSTP) is to find the spanning tree of G, that has the maximum number of leaves. In this report, we present experimental evaluation of the performance of exact algorithms for this problem and several heuristic solutions. The heuristic which we propose is a constructive heuristic. We evaluate the algori...

متن کامل

OPTIMIZATION OF TREE-STRUCTURED GAS DISTRIBUTION NETWORK USING ANT COLONY OPTIMIZATION: A CASE STUDY

An Ant Colony Optimization (ACO) algorithm is proposed for optimal tree-structured natural gas distribution network. Design of pipelines, facilities, and equipment systems are necessary tasks to configure an optimal natural gas network. A mixed integer programming model is formulated to minimize the total cost in the network. The aim is to optimize pipe diameter sizes so that the location-alloc...

متن کامل

A Mixed Integer Programming Approach to Optimal Feeder Routing for Tree-Based Distribution System: A Case Study

A genetic algorithm is proposed to optimize a tree-structured power distribution network considering optimal cable sizing. For minimizing the total cost of the network, a mixed-integer programming model is presented determining the optimal sizes of cables with minimized location-allocation cost. For designing the distribution lines in a power network, the primary factors must be considered as m...

متن کامل

A Faster Exact Algorithm for the Directed Maximum Leaf Spanning Tree Problem

Given a directed graph G = (V, A), the Directed Maximum Leaf Spanning Tree problem asks to compute a directed spanning tree (i.e., an out-branching) with as many leaves as possible. By designing a Branch-and-Reduced algorithm combined with the Measure&Conquer technique for running time analysis, we show that the problem can be solved in time O(1.9043) using polynomial space. Hitherto, there hav...

متن کامل

SOLVING A STEP FIXED CHARGE TRANSPORTATION PROBLEM BY A SPANNING TREE-BASED MEMETIC ALGORITHM

In this paper, we consider the step fixed-charge transportation problem (FCTP) in which a step fixed cost, sometimes called a setup cost, is incurred if another related variable assumes a nonzero value. In order to solve the problem, two metaheuristic, a spanning tree-based genetic algorithm (GA) and a spanning tree-based memetic algorithm (MA), are developed for this NP-hard problem. For compa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 412  شماره 

صفحات  -

تاریخ انتشار 2003